Chemistry Curriculum Overview – Year 13 (Teacher A)

Sequencing of topics	What knowledge will students develop? (Including key terminology)	What skills will students develop? (Including literacy & numeracy)	Assessment opportunities	Homework opportunities	Personal development (Catholic Social Teaching, Cultural Capital, Cross- curricular, Careers)	Curriculum links
Optical Isomerism	 Explain the cause of optical isomerism Identify molecules that exhibit optical isomerism/that are optically active. Draw pairs of optical isomers in 3D Describe how enantiomers affect plane polarised light Explain what a racemic mixture is, how they can be formed, and their effect on plane polarised light. 	 Make models of mirror image molecules of some chiral and non- chiral molecules to see if they are non- superimposable Identify whether molecules exhibit optical isomerism, and where they do draw the two enantiomers in 3D Understand how passing polarised light through a solution of sucrose affects the plane of the light Use Molymod models to show how a racemic mixture is formed when ethanal reacts with HCN 	 AFL Summative assessment Formative assessment CPAC skills assessment Practical report writing 	 Research Task Exam style questions Write up of practical Prepare a presentation Flipped learning Note making 	 United in harmony when we consider the wider uses drugs, medicines and plastics Grateful for medicine Faith-filled and hopeful when seeing beyond the naked eye and the advancements of medicine Discerning and joyful at the possibilities of science and medicine Leading others in pursuit of justice when planning and carrying out a practical Service and sacrifice when we recognise the scientific work that has been done before us Dignity of the human person when considering healthcare Courageous and resilient when we consider how medicine were developed and new drugs are trialled 	KS4/5 • Yr 9&12 Bonding • Yr 10 &11 • Organic • Yr 12 • Isomerism Oxidation of Alcohols to Aldehydes and Ketones

				\sim	Loving and]
Aldehydes and	• Oxidation of aldehydes	• Write equations for		0	compassionate when	KS5
ketones	to carboxylic acids	the oxidation of			we think about those	K35
Ketones	 Distinguish between 	aldehydes			who have suffered	- 12
	aldehydes and ketones	 Carry out test-tube 			serious illness and	• Yr 12
	 Reduction of aldehyde 	s reactions of			The impact of our	 Nomenclature
	and ketones	Tollens' reagent			actions on our	• Reaction
		and Fehling's			environment	mechanisms.
	• Write equations, know	solution to		0	Care of God's creation	
	reagents and conditions	distinguish		0	Dignity of God's people	
	and outline the	aldohydos and		0	Community and	
Carboxylic acids	mechanism for reaction	, ketones;			participation	
	of aldehydes and			0	Dignity in work	
	ketones with KCN and			0	Solidarity	
	acid	heating;		0	Personal	
	 Understand why 	 Write equations 		0	Cultural	
	reaction of aldehydes	and mechanisms		0	Social	
	and ketones with KCN	for the: reduction		0	Art	
	followed by acid can	of aldehydes and		0	History	
	form a racemic mixture	ketones using		0	Geography Maths	
	• Understand the hazards	NaBH4		0	DT	
		reaction of		0	Doctor	
	of using KCN	aldehydes		0	Analytical Chemist	
		and ketones with		0	Chemical Engineer	
				0	Environmental Chemist	
		KCN followed by		0	Research Scientist	
		acid		0	Patent Attorney	
		• Research why		0	Veterinary scientist	
		KCN/HCN are		0	Midwife/Nurse	
		highly toxic		0	Biomedical scientist	
				0	Dentist	
				0	Forensic Scientist	
				0	Nanotechnologist	
				0	Geoscientist	
				0	Food scientist	
				0	Pathologist	
				0	Pharmacist	

				Au	tun	nn Term 2			
and derivatives	a a b c c c c c c c c c c c c c c c c c	Draw the structure of and name carboxylic acids and esters Know how carboxylic acids react with carbonates Write equations for the reaction of carboxylic acids with alcohols to form esters Know some common uses of esters write equations for the hydrolysis of esters in acidic or alkaline conditions Understand the structure of animals fats and vegetable oils Know how soap and biodiesel are made and write equations for these reactions for specified fats/oils.	0 0 0	Draw and name carboxylic acids and esters Write equations for, and make esters by reactions of alcohols with carboxylic acids in test tubes; or an ester could be collected and purified using a separating funnel and distillation - Purify a liquid product, including use of separating funnel; Safely and carefully handle solids and liquids, including corrosive, irritant, flammable and toxic substances; Research uses of esters and the presence of esters in fruit Write equations for the hydrolysis of given esters in acidic and alkaline conditions		AFL Summative assessment Formative assessment CPAC skills assessment Practical report writing	Research Task Exam style questions Write up of practical Prepare a presentation Flipped learning Note making	United in harmony when we consider the wider uses drugs, medicines and plastics Grateful for medicine Faith-filled and hopeful when seeing beyond the naked eye and the advancements of medicine Discerning and joyful at the possibilities of science and medicine Leading others in pursuit of justice when planning and carrying out a practical Service and sacrifice when we recognise the scientific work that has been done before us Dignity of the human person when considering healthcare Courageous and resilient when we consider how medicine were developed and new drugs are trialled Loving and compassionate when we think about those who have suffered serious illness and The impact of our actions on our environment	Yr 12 Nomenclature Reaction mechanisms Oxidation of alcohols

 Make soap by hydrolysis of castor oil - Preparation of biodiesel Write equations for production of soap and/or biodiesel from specified fats/oils Identify an unknown ester by 	 Care of God's creation Dignity of God's people Community and participation Dignity in work Solidarity Personal Cultural Social Art History Geography
followed by hydrolysis and then purifying and finding the melting point of the carboxylic acid formed • Draw and name acid anhydrides, acyl chlorides and amides • Write equations and outline mechanisms for acylation reactions of water, alcohols, ammonia and amines with acyl chlorides.	 Doctor Analytical Chemist Chemical Engineer Environmental Chemist Research Scientist Patent Attorney Nurse Veterinary scientist Midwife Biomedical scientist Dentist Forensic Scientist Nanotechnologist Geoscientist Pathologist Pharmacist

		 Prepare, purify and test the purity of aspirin by melting point determination Name a range of aromatic compounds with common functional groups Draw enthalpy diagrams to show the relative stability of cyclohexane, cyclohexane, cyclohexa-1,4- diene, benzene and the theoretical cyclohexa-1,3,5- 	KS5 • Yr 12 • Nomenclature • Reaction mechanisms
Acylation	 Draw the structure of and name acid anhydrides, acyl chlorides and amides Identify the products of and write equations for acylation reactions of 	 c) Virite equations (including for the formation of electrophiles) and mechanisms for nitration and Friedel-Crafts acylation reactions given the starting material and products Carry out the preparation of 	

	 water, alcohols, ammonia and amines with acyl chlorides and acid anhydrides Outline the mechanism for the acylation reactions of acyl chlorides State advantages of using ethanoic anhydride rather than ethanoyl chloride in the production of aspirin Prepare and purify an organic solid and test its purity. Required practical 10 Preparation of: a pure organic solid and test of its purity • a pure organic liquid. 	 methyl 3- nitrobenzoate by nitration of methyl benzoate, purification by recrystallisation and determination of melting point Draw and name acid anhydrides, acyl chlorides and amides Write equations and outline mechanisms for acylation reactions of water, alcohols, ammonia and amines with acyl chlorides and acid anhydrides demonstrated. 		
Aromatic compounds -Bonding	 Describe the structure of benzene and explain how delocalisation makes benzene more stable than the theoretical cyclohexa- 1,3,5-triene Use thermochemical evidence from enthalpies of hydrogenation to 			

	 account for this extra stability Explain why benzene undergoes substitution reactions in preference to addition reactions. 			
-Electrophilic substitution	 Write equations and outline mechanisms for nitration and Friedel-Crafts acylation reactions of aromatic compounds. (including equations for the formation of electrophiles) Understand the usefulness of nitration and Friedel-Crafts acylation reactions 	Name a range of aromatic compounds with common functional groups Draw enthalpy diagrams to show the relative stability of cyclohexane, cyclohexane, cyclohexa-1,4-diene, benzene and the theoretical cyclohexa-1,3,5- triene		

		Spring Term 1	
Amines Nucleophilic properties	 Write equations and give conditions for the: preparation of primary aliphatic amines from both halogenoalkanes and nitriles Write equations and give conditions for the production of aromatic amines and identify their use in making dyes. Place amines in order of base strength and explain this order. Identify the various amines and quaternary ammonium salts formed when ammonia and amines react with halogenoalkanes give the mechanism for reactions of ammonia 	 Identify reagents and conditions and write Summative assessme Formative assessme Formative assessme CPAC skill assessme CPAC skill assessme Practical report Practical report writing 	entoExam style questionswider uses drugs, medicines and plasticsoNomenclatureentoWrite up of practicaloGrateful for medicine ooReaction mechanism.lsoPrepare awhen seeing beyondoNucleophilic

Condensation Polymers	 and amines with halogenoalkanes recognise the use of quaternary ammonium salts identify the products of and write equations for acylation reactions of ammonia and amines with acyl chlorides and acid anhydrides outline the mechanism for the acylation reactions identify the repeating unit and linkages in polyesters and polyamides given the monomer(s) identify monomer(s) needed the make a condensation polymer given the repeating units in Terylene, nylon 6,6 and Kevlar know some uses of condensation polymers 	 Draw the structure of repeating units in polyesters and polyamides given the monomer(s) and vice versa Students could make nylon 6,6 	 Care of God's creation Dignity of God's people Community and participation Dignity in work Solidarity Personal Cultural Social Art History Geography PE Maths DT Doctor Analytical Chemist Chemical Engineer Environmental Chemist Research Scientist Patent Attorney Nurse Veterinary scientist Midwife Biomedical scientist Forensic Scientist Nanotechnologist Geoscientist Pathologist Pathologist Pharmacist
--------------------------	---	---	--

	 Explain why polyalkeness cannot be hydrolysed and so are non-biodegradable Explain why polyesters and polyamides can be hydrolysed and so are biodegradable Evaluate the advantages and disadvantages of different methods of disposing of polymers. Draw the structure of 	 of a monomer using Molymods and then students collectively join them together to make a long polymer chain Create a summary table to compare and explain the biodegradability of different types of polymers 	KS4/5 • Yr 11& 12 • Forces between molecules • Covalent bonding • Polymers • Yr 12 • Nomenclature • Yr 13 • Carboxylic acids
Amino Acids,	given amino acids in acidic solution, alkaline solution and as zwitterions.	 Research and summarise different methods of disposing of polymers, including 	 Amines Chromatograp hy
Proteins	 Describe the primary, secondary and tertiary structure of proteins, including the importance of hydrogen bonds and 	recycling, considering advantages, disadvantages and sustainability	
	 S-S bonds Draw the structure of peptides formed from amino acids 	 Draw structures Differentiate between the four 	

 Identifing iven with hydrols Know the can be identific chromation includi values. Enzymes Explain are protection of throug active a substant which with the compution inhibit blocking that the second sec	 that amino acids separated and fied by thin-layer hatography, ing the use of R_f Make a 2D or 3D model of DNA using cut out components Label a diagram of DNA to show the components and the hydrogen bonding between base pairs sequence of diagrams showing DNA replication 			
--	---	--	--	--

 Identify the components of DNA
 Explain how the two DNA strands interact with hydrogen bonds between base pairs
 Describe how DNA replicates in simple terms
 Explain how the anti- cancer drug cisplatin prevents DNA replication
Explain why some drugs can have adverse effects and appreciate the balance between benefits and adverse effects of any drug.

Spring Term 2							
Chromatography	 Describe the similarities and differences between thin-layer, column and gas chromatography explain how chromatography works Use retention times and Rf values to identify substances Describe the use of mass spectroscopy to analyse substances separated by gas chromatography. Required practical 12 Separation of species by thin-layer chromatography Using ¹H and ¹³C NMR to deduce information about the structure of organic molecules. 	 Produce a summary to compare similarities and differences between thin-layer, column and gas chromatography Separate mixtures and identify substances (eg amino acids) by thin-layer chromatography Use retention time and Rf data to identify substances separated by chromatography Predict the number, position, relative intensity and splitting of signals in the ¹H 	 AFL Summative assessment Formative assessment CPAC skills assessment Practical report writing 	nt•Exam style questionswider uses drugs, medicines and plastics•Yr 12 OrganicoWrite up of practical•Grateful for medicine oKS3 & KS4 oKS3 & KS4 o•			

Proton NMR	 Understand the use of 	NMR spectrum of		The impact of our
	TMS and suitable solvents	compounds		actions on our
		••••••		environment
				• Care of God's creation
	 Understand the use of 			• Dignity of God's people
	TMS and the δ scale for			 Community and
	chemical shift			participation
	 Understand the use of 			• Dignity in work
	deuterated solvents or			o Solidarity
				• Personal
	CCl ₄			o Cultural
	 Use the n+1 rule to 			o Social
	deduce spin-spin			o Art
	splitting patterns of			• History
	adjacent, non-			o Maths
	equivalent protons in			 Analytical Chemist
	aliphatic compounds			• Chemical Engineer
	 Deduce the structure of 			 Environmental Chemist
				 Research Scientist
	compounds using ¹ H			 Patent Attorney
	NMR			 Midwife/Nurse
	 Deduce structures 			 Biomedical scientist
	including the number,			o Dentist
	position, relative			 Forensic Scientist
	intensity and splitting of			 Nanotechnologist
	signals			o Geoscientist
				 Food scientist
				• Pharmacist

		Sun	nmer Term 1			
Carbon -13 NMR Organic Synthesis	 Using ¹³C NMR to deduce information about the structure of organic molecules Deduce the structure of compounds using ¹³C NMR to deduce structures including the number and position of signals. Devise synthetic routes, with up to four steps, to make specific organic compounds using the reactions in the specification Explain why processes are designed to avoid solvents, non- hazardous starting materials and have steps with high atom economy. 	 Predict the number and position of signals in the ¹³C NMR spectrum of compounds Use data from NMR, and other analytical methods on the specification, to deduce the structure of compounds Devise synthetic routes, including reaction conditions, to make organic compounds using reactions in the specification Describe features of processes that improve sustainability 	 AFL Summative assessment Formative assessment CPAC skills assessment Practical report writing 	 Research Task Exam style questions Write up of practical Prepare a presentation Flipped learning Note making 	 United in harmony when we consider the wider uses drugs, medicines and plastics Grateful for medicine Faith-filled and hopeful when seeing beyond the naked eye and the advancements of medicine Discerning and joyful at the possibilities of science and medicine Leading others in pursuit of justice when planning and carrying out a practical Service and sacrifice when we recognise the scientific work that has been done before us Dignity of the human person when considering healthcare Courageous and resilient when we consider how medicine were developed and new drugs are trialled Loving and compassionate when we think about those who have suffered serious illness and The impact of our actions on our environment 	KS4/5 Yr 11 Organic Yr 12 Organic KS3 & KS4 Chromatography

			
			Core of Codia supplier
			• Care of God's creation
			 Dignity of God's people
			• Community and
			participation
			• Dignity in work
			o Solidarity
			• Personal
			• Cultural
			o Social
			• Art
			• History
			o Geography
			• PE
			• Maths
			0 DT
			• Doctor
			• Analytical Chemist
			• Chemical Engineer
			• Environmental Chemist
			Research Scientist
			• Patent Attorney
			o Nurse
			 Veterinary scientist
			• Midwife
			Biomedical scientist
			o Dentist
			• Forensic Scientist
			Nanotechnologist
			• Geoscientist
			• Food scientist
			• Pathologist
			• Pharmacist

Practical skills

- Safely and carefully handle solids and liquids, including corrosive, irritant, flammable and toxic substances
- Use laboratory apparatus for a variety of experimental techniques including distillation and heating under reflux, including setting up glassware using retort stand and clamps;
- Use laboratory apparatus for a variety of experimental techniques including filtration, including use of fluted filter paper, or filtration under reduced pressure;
- o Analyse, interpret and evaluate scientific information