Chemistry Curriculum Overview – Year 12 (Teacher B)

Sequencing of topics	What knowledge will students develop? (Including key terminology)	What skills will students develop? (Including literacy & numeracy)	Assessment opportunities	Homework opportunities	Personal development (Ursuline Values, Catholic Social Teaching, Cultural Capital, Cross- curricular, Careers)	Curriculum links
		Autumn Te				
Atomic structure	 Fundamental particles: appreciate that knowledge and understanding of atomic structure has evolved over time Explain the existence of mass number and isotopes. How a TOF mass spectrometer works and some of its simple uses. 	 Interpret and analyse simple mass spectra of elements Calculate relative atomic mass from isotopic abundance, limited to mononuclear ions 	Starter quizzes to retrieve knowledge and understanding Exam style questions for students to complete	Students find the concentration of NaCl in intravenous saline (9 g per dm ³), glucose in isotonic sports drinks (17 g in 500 cm ³) and other similar calculations for everyday solutions.	Reflect on the way Catholic social teaching connects the arms race, weapons of mass destruction, poverty, and the causes of war. Dignity of the human person How	GCSE Chemistry The structure of atoms (although this is revisited here). GCSE Physics - The structure of atoms
	• Explain how ionisation energy data provides evidence for electron structure.	 Write equations for first and successive ionisation energies Explain how first and successive ionisation energies in Period 3 and in Group 2 give evidence for electron configuration in sub-shells and in shells. Carry out calculations using 	Self and peer assessment End of topic test Required practical 1	Research why ¹² C was chosen as the standard; using the following skills- analyse, interpret and evaluate scientific information	is nuclear proliferation related to human life and dignity? Moral: Justice, law and order Nuclear Physics Analytical Chemist	 (although this is revisited here). The effect of a force on moving objects. The effect of a magnetic field on a moving,
Amount of substance (I)	 Relative atomic mass and relative molecular mass 	numbers in standard and ordinary form eg. using the Avogadro constant • Perform calculations to an appropriate number of	Make up a volumetric solution and carry out a		use Mass Spectrometer for drug testing and discovery and also	electrically charged particle (Separate Science)

	• The mole, Avogadro constant and concentration of a substance in solution.	 significant figures, given raw data quoted to varying numbers of significant figures Practice doing calculations involving Avogadro constant, involving mass, <i>M</i>_r and moles, and involving concentration, volume and amount of substance and quoting the final results to the appropriate number of significant figures for data provided 	simple acid– base titration.		the food industry (food scientist) Accurate chemical measurements are vital for a range of applications including accurately administering medicines, monitoring environmental pollution, assuring food and water quality and optimising chemical engineering processes.	
Autumn Term 2 Amount of substance (II)	 The ideal gas equation pV = nRT with the variables in SI units Perform calculations using the ideal gas equation. Explain the difference between empirical and molecular formulae Identify the relationship between empirical formula and molecular formula 	 Be able to rearrange the ideal gas equation, work in appropriate units and quote answers to an appropriate number of significant figures Recognise and make use of appropriate units in ideal gas calculations Practical opportunity to find the <i>M</i>_r of a volatile liquid Investigate the link between the gas laws and the ideal gas equation 	Carry out calculations: to find empirical formula from data giving composition by mass or percentage by mass; to find molecular formula from the empirical formula and relative molecular mass	Find the Mr of a volatile liquid Calculation opportunities using the ideal gas equation, so that the correct units need to be in pV = nRT. Carry out calculations with the ideal gas equation, including rearranging the ideal	Used by engineers when dealing with different situations, such as the capacity of storage containers, vehicle airbags and air pressure levels airplane cabins Engineering Personal: such as careers, finance and work experience	GCSE Chemistry - Relative atomic mass, relative molecular mass, relative formula mass (although this is revisited here) Writing formulae (elements, common compounds and ionic compounds) Balancing equations
	 Balanced equations and associated calculations 	 Balance equations, including ones where 	Practical skills: To find the empirical	gas equation to find unknown quantities.		(although this is revisited here).

Bonding	 To write balanced full and ionic equations. To understand the importance of processes having a high atom economy for society and industry. Understand ionic bonding. Understand covalent bonding, including co-ordinate bonds. Understand metallic bonding. Understand the structure of ionic, molecular, giant covalent and metallic substances. Explain why molecules and ions have the shapes that they have. Bond polarity; definition of electronegativity. The three types of intermolecular force: van der 	 formulae are given and some where they are not Write ionic equations from given equations Use an appropriate number of significant figures; Substitute numerical values into algebraic equations using appropriate units for physical quantities Practical skills: perform titration to analyse many substances, including many everyday substances : the concentration of ethanoic acid in vinegar Write the formula of ionic compounds, including those with common compound ions Draw molecules with lines/arrows showing covalent/co-ordinate bonds. Create a summary table to describe and explain the structure and properties of ionic, molecular, giant covalent and metallic substances Sketch the structures of diamond, graphite, ice, iodine. magnesium and 	formula of a metal oxide process & analyse data using appropriate mathematical skills Calculations to find masses, percentage yields, atom economies, volumes of gases, concentrations & volumes of gases, concentrations & volumes of solutions Practical skills: the yield for the conversion of magnesium to magnesium oxide Practical skills: Students find the <i>M</i> _r of a hydrated salt (eg copper sulfate or magnesium sulfate) by	Research how the behaviour of real gases deviates from ideal gas behaviour although this is beyond the specification Determine the empirical formula of a metal oxide. Opportunity to look at some further information about elemental microanalysis using the RSC resource (analyse, interpret and evaluate scientific information) Research: Which of the following ionic compounds have the highest and lowest melting points: sodium chloride; magnesium chloride – explain your reasoning? Research: Why is	Care for Creation: Almost everything a person sees or touches in daily life—the air we breathe, the food we eat, the clothes we wear, and so on—is the result of a chemical bond, or, more accurately, many chemical bonds Physical: food preparation and nutrition; health	 Moles (although this is revisited here). Calculations involving Masses (although this is revisited here). Concentration of solutions (Separate Science - although this is revisited here). Empirical and molecular formulae (although this is revisited here). GCSE Chemistry Structure and bonding
		Sketch the structures of	sulfate or magnesium	– explain your reasoning?	preparation and	

		 melting/boiling points and conductivity Make models of molecular shapes Explain how melting and boiling points of molecular substances depend on the relative strength of intermolecular forces. Identify the impact of hydrogen bonding on the density of ice and melting/boiling points. 	Practical skills: try to deflect jets of various liquids from burettes to investigate the presence of different types and relative size of intermolecular forces	even though Cl is more electronegative than N yet NH₃ has hydrogen bonding? Explain why ice floats on water by reference to hydrogen bonding		
Spring Term 1 Energetics	 Know that reactions can be exothermic or endothermic. Know what an enthalpy change is and about standard conditions. Define standard enthalpies of formation and combustion. Calorimetry Understand and be able to use the equation q = mcΔT to calculate molar enthalpy changes. 	 Draw enthalpy profiles for exothermic and endothermic reactions Write balanced chemical equations, to include state symbols, to represent the changes shown by standard enthalpy changes of formation and combustion Calculate molar enthalpy changes using provided data from calorimetry experiments Practical opportunity: Students find ΔH for a reaction by calorimetry eg. dissolution of potassium chloride, sodium carbonate, neutralising NaOH with HCl, displacement reaction between CuSO₄ + Zn; Combustion of alcohols 	Required practical 2: Measurement of an enthalpy change. Exam questions Starter quizzes End of topic test	Research how accurate values are found for the energy content in food and fuels.	Food and fuel industries Bomb calorimetry is used to determine the calorie content of food products. Bomb calorimeter is also used for animal feed research, coal analysis and explosive analysis Dignity of God's people: ingredients and foods for all Serviam: foodbanks	GCSE Chemistry - Exothermic and endothermic reactions

	 Understand Hess's law. Use Hess's law to calculate enthalpy changes using enthalpies of formation and combustion. Understand the term mean bond enthalpy. 	 Plot two variables from experimental data Plot and interpret graphs; Consider margins of error, accuracy and precision of data Practical opportunity: to find ΔH for a reaction using Hess's law and calorimetry, then present data in appropriate ways. Examples of reactions could include: thermal decomposition of NaHCO3 hydration of MgSO4 Enthalpy of formation of CaCO3 Calculate ΔH for reactions using mean bond enthalpies 		Calculate Hess's law plus enthalpies of formation and enthalpies of combustion Use mean bond enthalpies to calculate approximate values for ΔH for reactions	Social: charity work for foodbank	
Spring Term 2						
Kinetics	Collision theory. Maxwell–Boltzmann distribution curves. Understand how and why temperature affects the rate of chemical reactions.	 Using collision theory to explain why reacts do or do not take place Draw and Maxwell– Boltzmann curves at different temperatures, pressures and number of particles, identifying the most probable energy and particles with E ≥ E_a Practical opportunity: investigate the effect of temperature on the rate of 	Required practical 3 Investigation of how the rate of a reaction changes with temperature. Starter quizzes	Use Maxwell– Boltzmann curves to explain why a small increase in temperature leads to a large increase in reaction rate Investigate how knowledge and understanding of the factors that affect the rate of chemical reaction	Industry application of kinetics such as the Haber process which has a massive of applications from cleaning reagents to weapons. Reaction rates play a crucial role from production of chemicals and materials to the manufacture of	GCSE Chemistry - Reaction rates. GCSE Chemistry - Reaction rates. - Exothermic and endothermic reactions. - Equilibria (Separate Science but re- visited here).

Chemical equilibria (I)	Understand how and why concentration and pressure affect the rate of chemical reactions. Understand how and why a catalyst affects the rate of chemical reactions. Equilibrium constant Kc for homogeneous systems	 reaction of sodium thiosulfate and hydrochloric acid by an initial rate method Plot and interpret graphs Measure rates of reaction by at least two different methods, for example an initial rate method Investigate the effect of changing the concentration of acid on the rate of a reaction of calcium carbonate and hydrochloric acid by a continuous monitoring method Use a Maxwell–Boltzmann curve to explain how a catalyst increases the rate of a reaction Construct an expression for Kc for a homogeneous system in equilibrium Perform calculations involving Kc 	Summary worksheet to complete. Exam style questions to practise examination techniques Peer and self- assessments	 have changed methods of storage and cooking of food Use collision theory, including diagrams, to explain why an increase in solution concentration leads to an increase in reaction rate Use collision theory, including diagrams, to explain why an increase in gas pressure leads to an increase in reaction rate Research the use of catalysts in catalytic converters in cars Calculate the concentration of a reagent at equilibrium. Calculate the value of an equilibrium constant Kc 	pharmaceuticals and food products (research chemist, chemical engineer) Contact and Haber industrial processes in the chemical manufacture industry	AS Chemistry - Energetics (useful to do this first, but not essential as GCSE knowledge would suffice). - Kinetics (useful to do this first, but not essential as GCSE knowledge would suffice).
Chemical equilibria (II)	Understand how reversible reactions can reach a state of	 Practical opportunity: carry out test-tube equilibrium 		Practise writing expressions for K _c	Industrial production to	GCSE Chemistry:
	dynamic equilibrium. Understand Le Chatelier's principle.	shifts to show the effect of concentration and temperature (eg $Cu(H_2O)_6^{2+}$ with concentrated HCl).	up a reaction between ethanol and ethanoic acid with acid	and derive units for a variety of equilibria	produce compounds such as methanol, ethanol, sulfuric acid and ammonia	chemical equilibrium such as Haber process

Summer Term 2	Understand why a compromise temperature and pressure may be used for a reversible reaction in an industrial process. Understand the effect of a catalyst on an equilibrium. Predict the effect, if any, of changes in conditions on the value of $K_{c.}$	 Analyse, interpret and evaluate scientific information to explain how conditions in temperature and pressure are a compromise in examples of industrial processes Calculate K_c from data 	catalyst and leave to reach equilibrium before titrating and using the results to determine K _c	Calculate the moles and concentration of reagents at equilibrium given initial quantities and the quantity of one reagent at equilibrium		
Oxidation,	• Oxidation is the process of	Work out the oxidation	Preparation for		Application of redox	GCSE
reduction and redox equations	 Oxidation is the process of electron loss and oxidising agents are electron acceptors. Reduction is the process of electron gain and reducing agents are electron donors. Understand the rules for assigning oxidation states 	 Work out the oxidation state of an element in a compound or ion from the formula Write half-equations identifying the oxidation and reduction processes in redox reactions Combine half-equations to give an overall redox equation. 	DfE. Exam style questions Presentation from students of previous topics Mini review assessments of topics covered in Y12		titrations in pharmaceutical analysis, electrochemistry and medicine. Redox reactions are also important in the production of metals.	Chemistry: oxidation, reduction and redox reactions
Equilibrium Constant Kp	 Understand that the equilibrium constant Kp is deduced from the equation for a reversible reaction occurring in the gas phase. Kp is the equilibrium constant calculated from partial pressures for a system at constant temperature. Understand that, whilst a catalyst can affect the rate of attainment of an equilibrium, it does not affect the value of the equilibrium constant 	 Derive partial pressure from mole fraction and total pressure Construct an expression for Kp for a homogeneous system in equilibrium Perform calculations involving Kp Predict the qualitative effects of changes in temperature and pressure on the position of equilibrium and the value of Kp 		Calculate the partial pressures of reactants and products at equilibrium. Calculate the value of an equilibrium constant Kp		